Seasonal Cusp Radiation Belt on Dayside Magnetosphere
نویسندگان
چکیده
The possibility of quasi-stable trapping of charged particles of hundreds keV to MeV energy on the frontside Earth magnetosphere is explored in by numerical modeling of the single particle orbits in the geomagnetic field utilizing empirical Tsyganenko magnetic field model. Due to solar wind pressure the remote magnetic field lines on the frontside of the magnetosphere exhibit two minima in the geomagnetic field strength along the field line in high latitudes on the both sides of the equator. These minima may result in stable confinement structures, a kind of radiation belts, in the northern or/and the southern hemispheres, providing energetic particle trapping for times from several minutes to duration of seasonal scale. Simulation of energetic proton orbits passing through the regions of the magnetic field minima with different disturbance level and the Earth’s tilt reveals conditions in which these trapped radiation zones could result. It is shown that the existence of the adiabatic confinement zones strongly depends on the seasonal inclination of the Earth’s rotation axis. As a result the northern cusp confinement zone appears only in a summer solstice and similarly the southern cusp capture zone appears only in a winter solstice. In equinox time the confinement zones exist in both hemispheres in the disturbed magnetospheric conditions, however, they are less pronounced. The zones are essentially restricted to the sunlit magnetosphere. They form a kind of cusp radiation ring/belt, where a proton drifts with a period of several minutes, conserving its 1 and the 2 adiabatic invariants. The latitudinal width of the ring is very thin, about 2-5 latitudinal degrees. The proton orbits passing through the off-equatorial field minimum opposite to those cusp belts reveal another interesting effect: a bound of the geomagnetic equatorial plane on the day sector. These and other features of the confinement zones in the two minima off-equatorial magnetic field regions are discussed.
منابع مشابه
Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions
The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polarorbiting Exos-D (Akebono) satellite. We found that b...
متن کاملExploring the influence of ionospheric O outflow on magnetospheric dynamics: dependence on the source location
[1] Heavy ions of ionospheric origin (O) play an important role in altering global magnetospheric dynamics. While the heavy ions mainly originate from the dayside cusp and the nightside auroral region, the impact of these heavy ions on magnetospheric dynamics has not been differentiated. Controversy also remains on the role of heavy ions on tail stability and their energization mechanism in the...
متن کاملStructure anddynamicsofMercury’smagnetospheric cusp: MESSENGER measurements of protons and planetary ions
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has observed the northern magnetospheric cusp of Mercury regularly since the probe was inserted into orbit about the innermost planet in March 2011. Observations from the Fast Imaging Plasma Spectrometer (FIPS) made at altitudes< 400 km in the planet’s cusp have shown average proton densities (>10 cm ) that...
متن کاملStatistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit
Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty-six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the el...
متن کاملSource of the dayside cusp aurora
Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside th...
متن کامل